Mar 172014
 

Transformator jpg

Трансформаторът е статично електрическо устройство пренасящо чрез електромагнитна идукция променливотокова електрическа енергия от една (или повече) електрическа система към друга (или други), без изменение на честотата. Състои се от две или повече намотки навити около общ магнитопровод, галванически разделени една от друга. Намотката, на която се подава напрежение, се нарича първична, а напрежението – входящо. Напрежението, което се получава на изхода се нарича изходящо, а намотката – вторична.

763px-Transformer3d_col3 jpg - Copy

Принцип на работа

Работата на трансформатора се основава на два основни принципа:

1. Променливият във времето електрически ток в първичната намотка създава променливо във времето електромагнитно поле.

2. Електромагнитното поле създава чрез електромагнитна индукция  променлив електрически ток във вторичната намотка.

Електромагнитната индукция във вторичната намотка е:Уравнение на Фарадей jpgсъответно в първичната намотка е: Уравнение на Фарадей 2 jpg

Където:

U2 e напрежението на вторичната намотка;

N2 е броят навивки на вторичната намотка;

Ф сумарният магнитен поток през една навивка;

Ако разделим вторичното на първичното напрежение, получаваме: Резултантно уравнение на Фарадей

 С цел намаляване на загубите, намотките са навити на магнитопровод от феромагнитен материал. Съществуват трансформатори, работещи на високи и свръхвисоки честоти, които са без магнитопровод. При идеалният трансформатор всички магнитни силови линии преминават през всички навивки и променливото магнитно поле създава еднаква електродвижеща сила във всяка навивка, така че сумарната електродвижеща сила е пропорционална на броя на навивките на намотката. В идеалният трансформатор също така цялата първична мощност се трансформира без загуби в електромагнитно поле и след това в енергия във вторичната верига. В идеалният трансформатор входящата мощност е равна на изходящата мощност и е равна на произведението на тока и напрежението на първична страна, както е равна и на това произведение на вторичната страна:уравнение на идеалният трансформатор jpg

P1 и P2 са съответно мигновената стойност на мощността в първичната и вторичната верига.

От последните две уравнения следва:уравнение на идеалният трансформатор 2 jpg

Последното съотношение показва, че ако увеличим напрежението на вторичната страна, ще се намали тока.

В реалният трансформатор съществува и ток на празен ход, когато трансформатора не е натоварен (вторичната верига е отворена), това води до поява на пиков пусков ток в първичната верига, няколко пъти по-голям от номиналния,  и той трябва да се отчита, когато се проектират токови защити на трансформатори, при избор на комутационна апаратура и т.н.. Съществуват също така междунамотъчна, междувиткова и междуслойна капацитивност, защото при наличие на проводници разделени с диелектрик и достатъчно близо един до друг, винаги възниква паразитен капацитет. Освен режимът на празен ход има и режим на късо съединение. При него на първичната страна се подава неголямо напрежение, при свързана накъсо вторична, с цел измерване на загубите в намотките на трансформатора. Използва се обикновено при измерване на загубите на токовите трансформатори. Разбира се има и режим на натоварване, който е нормалният режим на работа на трансформатора. При свързване на товар към вторичната намотка, започва да тече вторичен ток, който създава магнитно поле с направление, противоположно на направлението на магнитното поле на първичната намотка в резултат на това се нарушава равенството между ЕМП от индукция и ЕМП от захранването, което води до увеличаване на тока в първичната намотка, докато постепенно магнитния поток не достигне предишната си стойност.

shell type jpeg - Copy

Загуби в трансформатора

Определянето на загубите в трансформатора и стремежа към тяхното намаляване е важно, защото техният размер е обратно пропорционален на КПД-то. Загубите в трансформатора се състоят главно от загуби от нагряването на магнитопровода, загуби от хистерезис и загуби от вихрови токове.

matsch_caps_magnetics-jpg - Copy

 

Ако магнитопроводът е от монолитен железен блок загубите от вихровите токове ще са значителни, затова той се прави от електромагнитни стоманени ламели с добавен силиций слепени във формата на магнитопровода. Поради голямата необходимост от стомана със специални електромагнитни свойства с ниски загуби за производството на трансформатори, е намерило публичност понятието трансформаторна стомана. Формата на магнитопровода също е от съществено значение за снижаване на загубите в трансформатора, но ще се спрем на този въпрос при разглеждането на видовете трансформатори.

Не е тайна, че размерът на трансформатора зависи от неговата мощност, като при качествена трансформаторна стомана и оптимална форма на магнитопровода този размер клони към минимум. Ако се чудите каква е точната зависимост на габаритите на трансформатора от неговата мощност ето една практична формула:

P_{gab}=\frac{P_1 + P_2}{2} = \frac{U_1 I_1 + U_2 I_2}{2}

Видове трансформатори

Според броя на фазите биват: еднофазни, трифазни, многофазни.

Според големината на изходното напрежение спрямо входното биват: повишаващи, понижаващи, разделителни.

Според охлаждането биват: сухи и маслени.

ang

Според формата на магнитопровода и общия външен вид биват: Ш – образни, PL – образни, тороидални, капсуловани (за печатен монтаж).

13135

Според предназначението: силови (за електроенергетиката, промишлеността селското стопанство),

Силов маслен трансформатор

автотрансформатори (служат за изменение на напрежението в определени граници),

ЛАТЕР

автотрансформатор

измервателни (за измерване на ток и напрежение, когато стойностите им са неподходящи за непосредствено измерване с измервателните апарати).

curent transformer

токов трансформатор

Съществуват и т.н. въртящи (или завъртащи се) трансформатори. Конструктивно те представляват малогабаритна индукционна електрическа машина с променлив коефициент на връзката между намотките (променлив коефициент на взаимна индукция) т.е. променлив коефициент на трансформация. Принципно представляват сензор за ъгъл на завъртане. Използват се в корабите за завъртане на руля на кораба.

rotary-transformer-torque-sensors

въртящ трансформатор

Роторът на въртящия се трансформатор е направен от електротехническа стомана и представлява магнитен комутатор. Върху ротора няма намотки, което позволява да се намалят размерите и теглото му. При безконтактният въртящ се трансформатор няма четков контакт (оттук названието „безконтактен”) и е без гъвкави проводници, препятстващи лесното завъртане на ротора и понижаващи надеждността на работа. Статорът на въртящия се трансформатор е направен като статора на ел. двигател и има четири явно изразени полюса. На два съседни полюса е разположена едната бобина на първичната намотка, a на другите два – бобините на вторичните  намотки. Бобините  на  вторичните  намотки  имат  еднакъв брой  навивки и са навити противоположно. Към първичната намотка се подава променливо напрежение. Променливият ток, като протича през първичната намотка, създава променлив магнитен поток. От своя страна магнитният поток индуктира във всяка от вторичните намотки електродвижещи напрежения (ЕДН) с амплитуда и фаза, зависещи от положението на ротора. Така например ако роторът е разположен симетрично спрямо полюсите на вторичните намотки, магнитният поток се разпределя (от ротора) равномерно и във вторичните намотките се индуктират равни по амплитуда, но противоположни по фаза ЕДН, общото ЕДН, което се получава на изходните клеми на въртящия се трансформатор, е равно на нула. При завъртане на ротора от средно положение равномерността  на разпределяне на магнитния поток между полюсите на вторичните намотки се нарушава, тъй като магнитната проводимост на единия чифт полюси (на първичната и на вторичните намотки) се увеличава, а на другия чифт се намалява. Увеличението на магнитния  поток, преминаващ през навивките на едната вторична намотка, предизвиква увеличение на ЕДН1. В същото време намаляването на магнитния поток в другата намотка води до понижаване на ЕДН2. Благодарение на това на изходните клеми на трансформатора се появява резултантно ЕДН различно от нула.

Rotationstrafo_Schnitt jpg - Copy

Принципно устройство на един от видовете въртящ трансформатор

Jan 062014
 

Общи сведения:

Стабилизаторите на напрежение са разработени с цел осигуряване на нормално захранване на битови и домакински електроуреди, хладилник, климатик и др. Стабилизаторът е създаден с помощта на тороидален автотрансформатор, контактен регулатор – серво мотор, задвижващ механизъм, платка управление и защита. При промяна на входното напрежение, моторът задвижва подвижното рамо на контактния регулатор и осигурява стабилизирано напрежение на изхода. Добре е регулаторът да има голяма точност, кратко време за корекция, малка собствена консумация, дългосрочна надеждна работа. Устройството може да бъде снабдено с различни защити – забавен старт след отпадане на напрежението, защита от повишено или понижено напрежение на входа, защита от претоварване с автоматични предпазители с крива тип „С“, и други.

Основни характеристики:

– Диапазон на входното напрежение – 165÷245VAC.
– Стабилно изходно напрежение – 220VAC ± 4%.
– Номинална честота (Hz) – 50Hz/60Hz
-Може да има едновременно стабилизирано напрежение 220VAC и 110VAC на изхода
– Защита от по-ниско от 165VAC и по-високо от 240VAC напрежение на входа

– Забавено включване на изходното напрежение – 1 или 5 мин., за чувствителни
консуматори като хладилници и климатици – жълт превключвател.
– Индикация за стойността на входното и изходното напрежение.
– Скорост на регулирането (V/s) – <1s (когато входното напрежение има промяна от 10%)
– Ефективност, КПД – > 90%
– Фактор на мощността cos ϕ ≥ 0.9
– Работна температура – -10°C ÷ +40°C
– Относителна влажност на въздуха – <90% RH (без конденз)
– Защита от претоварване – двата автоматични предпазителя с криви „С“.

Електрическата схема на прецизни променливотокови стабилизатори на напрежение с мощност от 0.5kVA до 10kVA е показана на фигура 1.
Крива на натоварването (фигура 2):
P- Изходна мощност
Pe- Номинална изходна мощност
U- Входно захранващо напрежение
Ux- Долна граница на минимално допустимо входно напрежение
Us- Горна граница на максимално допустимо входно напрежение

traf

 

 

 

 

 

 

 

 

 

 

 

Фигура 3 – Общ изглед

1 – Кутия

2 – Превключвател режим на работа

3 – Панел

4 – Капак на разклонителната кутия за кабелните връзки

5 – Отвор за подвеждане на входно-изходните кабели

6 – Закрепваща планка (кука)

7 – Волтметър

8 – Индикатор за наличие на входно напрежение

9 – Индикатор за включено закъснение при включване на стабилизатора

10 – Индикатор за понижено входно напрежение

11 – Индикатор за повишено входно напрежение

12 – Бутон за включване на закъснение при включване на стабилизатора

13 – Бутон за измерване на напрежението (входно/ изходно)

14 – Превключвател за избор на режим на работа – стабилизиране / нестабилизиран

15 – Бутон за включване на защита от понижено входно напрежение

Traf2

 

 

 

 

 

Инсталация и ползване:

Изберете сухо и проветриво място в близост до таблото с електромера.  Чрез проводници с подходящо сечение и цвят,  вържете „фаза”, „нула” и заземяване към входа на стабилизатора на напрежение. Към товара се подвеждат съответно „фаза”, „нула” и заземителни проводници с подходящо сечение, съобразено с мощността му. Примерна схема на свързване е показана на фигура 6.

traf3

 

 

 

 

 

 

 

 

 

Когато товарът е активен, стабилизаторът може да се натовари с пълната си номинална мощност, но когато товарът има изразен индуктивен или капацитивен характер, то натоварването не трябва да надхвърля 33% от номиналната изходна мощност на стабилизатора! Включването на товар с изразен индуктивен или капацитивен характер и мощност близка или равна на номиналната на стабилизатора ще го повреди поради факта, че такъв тип консуматори имат голям пусков ток и обратно напрежение при изключване!

 

Ако консуматорите са хладилници или климатици, превключвателя за забавяне на включване на изходното напрежение се поставя в положение „дълго забавяне – 5 мин.“ След това се включва автоматичният предпазител в положение стабилизатор и устройството започва да регулира. Ако не се изисква регулиране на напрежението, може да включите автоматичния предпазител на позиция „директно изходно напрежение”, като преди да го превключите изключете стабилизатора. Ако се наложи изключване на стабилизатора, първо се изключват консуматорите и след
това се изключва стабилизатора. Ако входното напрежение надхвърли 240±4V или е по-малко от 165±4V, то стабилизаторът автоматично ще се изключи и когато входното напрежение се нормализира, стабилизаторът автоматично ще се включи и ще продължи да регулира. Ако превключвателят за високо/ниско входно напрежение се постави в положение „ НЯМА”, тази защита няма да се задейства при напрежение по-ниско от 165VAC, но това крие рискове. Стабилизаторът издава шум при задвижване на рамото на контактната система, също така се отделя топлина, особено при пълно натоварване. Стабилизаторът не трябва да се покрива с калъфи, дрехи или завивки, тъй като се влошава охлаждането му. След дълга работа, помолете специалист да почисти праха и замърсяването по тороидалния трансформатор и четкодържателя. Ако забележите нещо необичайно, изключете стабилизторът и извикайте квалифициран техник или се свържете с Вашия доставчик.

Симптом / Проблем / Причина / Решение

Няма стабилизиране на напрежението.

1. Има проблем със задвижващия механизъм на серво мотора.
Ако мотора не може да задвижи подвижното рамо, дори и да се върти и има напрежение, то той трябва да бъде заменен.
2. Входното напрежение е отвъд границите за регулиране. Проверете дали се е задействала някоя от защитите. Ако има задействана защита моля изчакайте тя да възстанови работата на стабилизатора автоматично. Ако това не стане изключетe стабилизатора, изчакайте 10 мин. и го включете отново. Ако и това не помогне и моторът няма напрежение,  проверете платката за настройка и защита. Ако проблемът не може да се отстрани лесно моля заменете или поправете платката за настройка и защита.

Няма изходно напрежение.

1. Главния прекъсвач.
Включете главния прекъсвач. Проверете дали кабелите са свързани правилно и здраво.
2. Грешка или изгорял
миниатюрен предпазител вследствие на претоварване.
Рестартирайте стабилизатора, подменете предпазителя и намалете товара.

Стабилизатора работи, но има отклонение от стойностите на стабилизираното напрежение.
1. Не е настроен потенциометъра за регулиране на изходното напрежение.
Задайте желаната стойност на изходното напрежение чрез потенциометъра за настройка.
2. Показанията на волтметъра не са правилни.
Подменете или поправете волтметъра.

Бобината на стабилизатора е нагоряла.

1. Мощността на захранения товар е прекалено голяма, над възможностите на стабилизатора.
Обърнете специално внимание и проверете мястото на инсталиране и стойността на изходното напрежение, когато сменяте бобината или трансформатора.

Понякога устройството издава шум при работа.

1. Честата промяна на захранващото напрежение води до постоянна настройка на изходното напрежение спрямо входното.
Само изходящото напрежение е стабилното номинално такова. Нормално е стабилизатора да издава шум, породен от движението на рамото и серво мотора.

Стрелката на волтметъра се движи постоянно и от четките излизат искри. 

1.Контакта между четките и повърхността на бобината е слаб и има разстояние между тях. Използвайте много фина шкурка за да изчистите повърхността на бобината и четките.

2. Четките са износени.  Подменете четките.

Забележка:

Може да срещнете на пазара т.н. „Релеен стабилизатор на напрежение“ на странно ниска цена. Не се препоръчва употребата на този тип стабилизатори поради простата причина, че той няма сервомотор, а регулацията се извършва чрез превключване на релета. Това води до импулсни смущения във всички уреди включени след стабилизатора при всяко превключване на релетата, а това става при всеки опит за регулация на напрежението. Така също точността на тези „стабилизатори“ е в диапазона +/-8%, което на практика означава при 220 VAC – 17.6 волта отклонение. Накратко казано това не е никакъв стабилизатор и не съветваме да бъде купувано подобно псевдоустройство, независимо от изкушаващата ниска цена.